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Abstract. The splitting of the frequencies of p-mode muhiplets

enables information to be gained about the internal rotation of

the sun. Such data have revealed a transition at the base of the

convection zone from differential rotation similar to that ob-

served at the surface to almost solid-body rotation in the ra-

diative interior. This transition region, known as the tachocline,

has been found to be relatively narrow and centred below the

base of the convection zone. In this paper, the evolution of the

transition region is investigated numerically. Without a large

anisotropic viscosity, the depth to which it would spread in one

solar age, under the assumption of a constant prescribed differ-

ential rotation at the base of the convection zone, is found to be

greater than its extent as inferred from helioseismology. In the

second part of the paper a highly anisotropic turbulent viscos-

ity with a large horizontal component, as suggested by Spiegel

& Zahn (1992), is assumed. In this case, a steady tachocline is

formed in which the advection of angular momentum balances

the Reynolds stresses. The horizontal component of turbulent

viscosity required to match the thickness of the tachocline to that

obtained by helioseismology.is estimated to be 5 x 10%m2s -I .

The transport of helium is studied in this case and is found to

yield a sound-speed increase similar to that required by helio-

seismology.

Key words: Sun: interior; rotation; oscilations

1. Introduction

The accurate measurement of the frequencies of solar p-modes

has enabled much information to be gained about the distribu-

tion of angular momentum within the solar interior (Brown et

al. 1989; Goode et al. 1991 : SeMi 1991 ; Thompson et al. 19961.

This has made the search for a good theoretical understand-

ing of the processes at work within rotating stars all the more

important.

The possible existence of a meridional circulation, which

could transport material and angular momentum within the so-

lar radiative interior, was first proposed by Eddington in the
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early part of this century. However, a consistent picture of the

distribution of angular momentum to which the sun evolves has

been difficult to ascertain. Tassoul & Tassoul (1982), amongst

others, argued that the sun must evolve to a state where a balance

exists between the transport of angular momentum by advection

and its transport by turbulent viscosity. This turbulence could

very well arise from shear instability (Spiegel & Zahn 1970),

with other instabilities almost certainly playing a role.

A particularly interesting aspect of the solar angular-

momentum distribution is the transition layer between the

rigidly-rotating radiative interior, and the differentially-rotating

convection zone. This layer, known as the tachocline, is be-

lieved to be an important component of the dynamo which is

responsible for the solar cycle - its strong shear has the ability

to transform a poloidal field into a strong toroidal field, which

can rise up buoyantly through the convection zone and erupt on

the solar surface as sunspots (Spiegel & Weiss 1980).

In this paper, the time evolution of differential rotation in

the tacbocline is studied by means of a numerical simulation,

assuming the rotation rate at the base of the convection zone

to be prescribed. The equations solved are similar to those of

Spiegel & Zabn (1992). Various other simplifying assumptions

are made, the details of which are described in Sect. 2.2. It is

initially assumed that the flow is not highly anisotropic - in this

case the differential rotation is found to spread far into the radia-

tive interior. A highly anisotropic viscosity is then introduced in

Sect. 5 - this has the effect of limiting the spreading of the dif-

ferential rotation and establishing a balance between advection

of angular momentum and transport by turbulent viscosity.

The effect of the corresponding circulation on the transport

of helium is studied in Sect. 6. Helium originating in the convec-

tion zone, which has settled under gravity into the tachocline, is

mixed back into the convection zone. This causes a reduction in

the mean molecular weight in the tachocline, and a consequent

increase in the sound speed there, Since helioseismic inversions

in this region indicate a higher sound speed in the sun than in

current models, mixing improves the agreement with such in-

versions.
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2. Governing equations

2.1. Equations in a rotating frame

In order to describe differential rotation in the solar interior it is

useful to write the equations of motion with respect to a frame

rotating with angular velocity 12. The equations of conservation

of mass, momentum, and energy become

OP + _7 (pv) O, (1)

[Or ]p _ + (v. V)v + 212 x v = -Vp - pV¢b + V. Ilrtl ,(2)

pT -_+v-VS =V.(xVT), (3)

where p, T and p are the density, temperature and pressure

respectively, v is the fluid velocity, S is the specific entropy, X

is the thermal conductivity, ,I, is the gravitational potential, and

]l'r[] is the turbulent stress tensor.

2.2. Assumptions

The equations are solved under the assumption that the mean

structure and the large-scale flow are axisymmetric about the
axis of rotation (the small-scale turbulence is certainly not). The

system can therefore be described solely in terms of the spherical
coordinates r and 0, where 0 is the colatitude. The solution is

sought in a spherical shell with the outer edge corresponding to
the base of the convection zone.

All structure quantities, for example the pressure, p, are sep-

arated into a mean value on the sphere plus a perturbation:

p(r, O, t) = _(r, _) + _(r, O, t) , (4)

where f g(r, 0, t)sin 0 dO = 0. The angular rotation rate, ,v, is
written as

,v(r, 0, t)= c,_ =_(r,t)+_(r. 0, t), (5)
r sin 0

where f 2,(r, O, t) sin 3 0 dO = 0.

Equations (1)-(3) are solved under assumptions which are

very similar to those employed by Spiegel & Zahn (1992). The?
are as follows:

1. The time scale of the flow is very much longer than the sound

crossing time, and the circulation can therefore be calculated

using the anelastic approximation, i.e. that V-(pv) = 0. This

cannot hold strictly as it would imply Op/Ot = 0 which is

clearly not the case. However. since the time scale of the

circulation is very much shorter than the time scale on which

the density is modified (the Eddington-Sweet time scale/,

Op/Ot may safely be neglected.

2. Since the time scale of the flow is long compared to the ro-
tation time scale, the inertial and viscous forces are small

compared to the Coriolis forces in the radial and latitudi-
nal directions: in these two directions a geostrophic balance

exists between the Coriolis force and the pressure gradient.

Since no zonal pressure gradient can exist owing to the as-

sumption of axisymmetry, the azimuthal Coriolis force must

be balanced by inertial and viscous forces.

3. The oblateness in the figure of the sun caused by the cen-

trifugal force is small enough that the level surfaces of the

effective potential can be taken to be spheres, with a com-

pensating thermal source term added to the energy equation
(Zahn 1992),

_ES = MEnP2( cos 0), (6)

where L and M are the solar luminosity and mass respec-

tively, P2 denotes the second Legendre polynomial, and in

the case of uniform rotation, En may be represented as

E.=2 I 9'

where f/ = ]_l. In the outer regions of a star. the non-

spherically symmetric component of the gravitational ac-

celeration may be represented as

5 \ c.v / • (s)
4. Second derivatives of thermodynamic quantities are ne-

glected, i.e. quantities like the specific heat at constant pres-

sure, Cp, and the thermal conductivity, X, are assumed to be
constant. This leads to a linear, ideal-gas equation of state

- = = + - . (9)
T

No explicit assumptions are made regarding the thickness,

h, of the shell in which the simulation is performed. However the

accuracy of the simulation is sensitive to h through the neglect

of modifications to the background state caused by the changing

E'(r, t). Since the modification of the background state involves

a displacement of the order of h-2/9.., which in turn reacts back
on 2;(r, t) by an amount h2/r, this approximation becomes pro-

gressively worse as the thickness of the shell increases. If the
modification of the background state were included, the effect

would be to reduce the pressure fluctuation. _, and thereby also

to reduce the predicted circulation velocity.

2.3. Simplified equations

Under the above assumptions, the radial component of the mo-

mentum equation reduces to

2rsin:0.O.-= 1 ?)/_
" (to)

where 9 is the acceleration due to gravity, with 9 assumed to

be a constant, prescribed function of radius, since the layers

of interest are at a large distance from the solar core. The 0

component of the momentum equation becomes

2r sin 0 cos 0 9..2: - (11)
r_ 00 '

I_m ',/
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The .__component of the momentum equation, which expresses
the balance between Coriolis, inertial, and viscous forces, be-
comes

r sin 0 _'_' 0v_, Ove
Ot + c'r_ + vo _ + 2f_ (vr sin 0 + v0 cos 0) =

_q-2 Or -Pt'Vr4 + ut_sin 3 , (12)r sin 2 0 O0 O0 ]

where UH and Uv are the horizontal and vertical components of

the turbulent viscosity.

As a result of the anelastic approximation, the circulation in

the spherical shell may be represented by a streamfunction _,

T_r2 sin Ot¥ O_
= 0--if' (13)

0_

_r sin 0co - Or ' (14)

where vr a: :0 are, respectively, the radial and tangential com-
ponents of the velocity. Since the system is assumed to be ax-

isymmetric about the axis of rotation as well as having reflective

symmetry with respect to the equatorial plane (a consequence of
the symmetry of the imposed boundary conditions), vo should

vanish at 0 = 0 and 0 = rr/2. Eq. (14) implies that kO must

also vanish at these values of 0. Integrating Eq. (13) with re-

spect to 0, this condition corresponds to the requirement that
f v,. sin 0d0 = 0, or that there is no net inward or outward mass
flux.

The energy equation consists of a spherically-averaged part.
neglected in this paper, and a perturbation given by

Ot - _ (V.,,_ - V) + --pep r-__r xr2

, o(. ]+r2sinO00 xsmO-_ +P-ES , (15)

where _' is the temperature gradient d In T/d In p, and V=t is the

thermodynamic derivative 0 In T/O In p at constant specific en-

tropy. The potential singularity in Vr caused by Vad - V passing
through zero is avoided by locating the base of the convection

zone at the point where the convective heat flux becomes negli-
gible. Owing to convective penetration, this is below the point
where _" = _Tad, and the stratification is therefore subadiabatic

in the whole computational domain.
After about one thermal relaxation time, a balance is struck

between the terms on the right-hand side of this equation, and

the time derivative on the left-hand side may be neglected. It is

not strictly zero. but since the system evolves on a time scale

comparable with the local Eddington-Sweet time (Spiegel &

Zahn 1992). it is small enough that the terms on the right balance
almost perfectly.

2.4. Boundary conditions

Boundary conditions are imposed at the inner and outer edges
of the region of solution. The system is fourth order and there-

fore four boundaD' conditions are required. The rotation rate is

assumed to be prescribed by the convection zone above, and to

have a form corresponding to that inferred from helioseismol-

ogy. An inversion has recently been carried out for the solar

internal rotation using splitting data from the GONG network
(Thompson et al. 1996). At the base of the convection zone, this

inversion leads to the following expression for f/bcz:

f_bc----!= 456 -- 72cos 2 0 -- 42cos 4 0 nHz (16)
2rr

This is used to give the outer boundary condition on _,,

9.+ _,= f2bczatr = rbcz , (17)

whel'erbcziStheradiusofthebaseoftheconvectionzone.f2is

chosentobe therotationrateoftheradiativeinteriorbelow the

tachoclinc- hclioseismicinversionsindicatethatthisvalueis

equal to the rotation rate of the convection zone at a latitude of

about 30°, corresponding to _/2rr _, 437nHz.
The second outer boundary condition is derived from the

requirement that the partial derivative of the rotation rate with

respect to radius be continuous. Since helioseismic inversions

indicate that the rotation rate depends little on radius deep within
the convection zone, this boundary condition becomes:

Oa,,
-- = 0 at r = rbcz • (18)
Or

1he last two boundary conditions,

" = _-r = 0, (19)

are imposed at the inner edge of the region of solution.

3. The solution

3.1. l[umerical method

The _volution of the rotation rate _'(r. 0, t) with time is studied

numerically. Eqs. (10)-(15) are solved using finite differences to

represent partial derivatives with respect to r and 0, and using a
first-order explicit scheme to carry out the evolution in time. A

uniformly spaced grid, with spacings Ar and A0, is set up with

equal numbers of points in the r and 0 directions, r is chosen to

vary !'tom rbcz/2 to rbcz, while 0 varies from 0 to w/2.

Ir itially. Eq. (11) is integrated to find/5(r, 0. t) in terms of

,'( r. _ , t ). Eq. (10) is then solved to find -fi(r, O. t ). T ( r. O. t) ma?
then t e obtained from the equation of state. After neglecting the

time cierivative in Eq. (15). the radial component of the velocity.
cr m_,y be found by taking the Laplacian of T(r, O. t).

The streamfunction _(r, 0, t) is now evaluated. This is done

by integrating Eq. (13) with respect to 0. The tangential compo-

nent ( f the velocity, c0, may then be evaluated using Eq. (14).

Finally, the rotation rate is updated using Eq. (12). The advec-
tive t_rms (the second and third terms on the left-hand side of

this equation) are included, but turn out to be small in compari-
son with the Coriolis term (the last term on the left-hand side).

since he Rossby number (the ratio of the advective term to the

Corio is acceleration) is small (Spiegel & Zahn 1992).



J.R.Elliott:Aspectsofthesolartachocline 1225

_(,',0) *(,-,0)

(1.7 O.g 0.5 0.4. 0.3 0.2 0.I 0.0 0.I 0.2 0.3 0.4 0,5 0,6 0.7

r/n

Fig. 1. The radiative spreading of differential rotation imposed at the
edge of the radiative zone after one solar age. The left-hand quadrant
shows contours of _(r, 0) with solid contours denoting prograde dif-
ferential rotation, while the right-hand quadrant shows contours of the
streamfunction tI,(r, 0), with solid contours corresponding to clock-
wise circulation. The rotation of the base of the convection zone is

here chosen to match that of the deep radiative interior at a latitude of
approximately 30° .

The stability of this explicit time-evolution scheme is deter-
mined by the condition that the time step, At, should be shorter

than the time for the differential rotation to spread radially a
distance Ar,

4

where rES is the local Eddington-Sweet time.

(20)

3.2. Reference model

The spherically-averaged values of p, p and T, along with the

values of X, Cp and 9, are derived from a reference solar model
(_I is assumed to take the ideal-gas value of 5/3). This reference

model is constructed using the MHD equation of state (Mihalas

et al. 1988) and the OPAL opacities (Iglesias & Rogers 1991)

with an assumed heavy-element abundance of Z = 0.02. The

assumed solar age is 4.6 x 10 9 years. Since the outcome of the

current calculation is not particularly sensitive to the details of
the reference model, discussion of other details of its construc-

tion are deferred.

3.3. Initial conditions

The initial conditions chosen for all simulations are ,.,(r. 0. t =

0) = 0. Since there is no way of knowing what the actual initial

conditions should be in the solar case, there is an implicit as-

sumption that the results obtained are not particularly sensitive
to the initial conditions.

4. Radiative spreading

In this section, the turbulent viscosity is assumed not to be highly

anisotropic. As a consequence of this, the horizontal transport

_(,-,0) ,t,(,-,0)

0.7 0.6 0.5 0.4 0.3 0.2 0.I 0.0 0.1 0.2 0.3 0,4 0.5 0.6 0.7

r/R

Fig. 2. As in Fig. 1, but with the boundary condition on ,,,'at the base
of the convection zone given in this case by Eq. (21).

of angular momentum, the last term in Eq. (12), may be ne-

glected in comparison with the vertical transport as long as the

tachocline is not too thick. Assuming the vertical transport term
to be small also, the result of the numerical calculation described

is shown in Fig. 1.

As can be seen, after one solar age, the transition region

from differential rotation to rigid rotation has spread signifi-

cantly into the radiative interior. Another feature of note is that

the contours of the streamfunction _, shown in the right-hand

quadrant, are nearly parallel to the axis of rotation at the edge
of the region of solution. This is because the imposed rotation
law at the base of the convection zone forces the streamlines

to be parallel to lines of constant specific angular momentum;

since the latter are almost parallel to the axis of rotation, owing

to the ratio Aft/f2 being relatively small, the streamlines must

also be nearly parallel to the axis of rotation.

A second calculation is performed under the assumptions of

the work of Spiegel & Zahn (1992): in this analytical study, the

radial component of the velocity was neglected in determining

the evolution of the differential rotation, on the grounds that in

a thin shell it would be small in comparison with the tangential

component. This approximation allowed the equations to be

separated in the r and 0 directions, with the caveat that ,_, was
forced to be zero at 0 = rr/2. To test the effect of this restriction.

a numerical simulation is carried out choosing

-,.'(rt,_-z.0. t) = -72 cos 2 0 - 42 cos* O nHz. (21_

in accord with Eq. (16). The result of this second simulation is

shown in Fig. 2.

The depth to which differential rotation imposed at the edge

of the radiative interior would diffuse in one solar age is seen

to be roughly 0.2R.£: in the cases sho,,vn in Fig. I and Fig. 2.
This is somewhat smaller than the value obtained by the an-

alytical calculation of Spiegel & Zahn (1992), namely about

0.2625R _. but still conflicts with the helioseismic determina-
tion of tachocline thickness and depth carried out by Koso-

vichev (1996). In the latter paper, a depth of 0.692 ___0.005R _

and a thickness of 0.09 -;- 0.04R ? were obtained by fitting a
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Fig. 3. The function A3(r) for the cases shown in Fig. 1 (dashed line)

and Fig. 2 (dot-dashed line), and the form deduced by helioseismology
(solid line).

differential-rotation profile parameterized by depth and thick-

ness to the solar p-mode splitting coefficients. In order to con-

trast the results of the radiative spreading described here with

the results of helioseismology, the function A3(r), introduced

by Kosovichev (1996) as the coefficient of the associated Leg-

endre polynomial P31(cosO) in an expansion for the rotation

rate, is calculated for the two cases described in this section

and compared with his parameterized best fit to the solar p-

mode splittings. This particular coefficient was investigated by

Kosovichev (1996) on the grounds that it is especially sensitive

to the variation of angular rotation rate in the solar tachocline.

Fig. 3 represents this comparison; the dashed line shows the

case of interior rotation matching convection-zone rotation at a

latitude of 30 °, the dot-dashed line shows the case where w is

zero at the equator, while the solid line shows the best fit to the

helioseismology data determined by Kosovichev (1996).

The spreading predicted by the results of these simple cal-

culations is seen to be much greater than that determined ob-

servationally. In addition, it was here assumed that Q was con-

stant over the whole life time of the sun. In reality, the sun has

been slowing down due to the braking effect of the solar wind,

and was rotating faster in the past. The spreading would be in-

creased if this slowing down was taken into account, making the

discrepancy between the predictions of this model and obser-

vations even greater. Some way needs to be found of inhibiting

the spreading of the tachocline into the radiative interior•

5. Anisotropic turbulent viscosity

Spiegel & Zahn (1992) suggested that strongly anisotropic tur-

bulence could inhibit the spreading of the transition region into

the radiative interior of the sun, and that in the solar tachocline

a balance may exist between the advection of angular momen-

tum by the circulation and the Reynolds stresses acting on the

horizontal shear. Since the thickness of the tachocline would

depend on the horizontal component of the turbulent viscosity.

a knowledge of the thickness would enable this component to
be estimated•

_0-,0) +0-,0)

Fig. 4, The steady state reached when the advection of angular mo-

mentum by the meridional circulation balances the Reynolds stresses.

The horizontal component of the turbulent viscosity is here chosen to

be 5 × 10acm"s -_, while the ratio *,m/uv = 1000.

When

UH (rbcz "]2
-- _- (22)
Uv \h/ '

as may be the case when the stable stratification of the subcon-

vecti_ e layers produces strongly anisotropic turbulence, the first

term (,n the right-hand side ofEq. (12) may be neglected to give:

09' , 0_'_ 0vo
rsin_=-_+tr--_- r +c0 00 - 2_(t,_-sin0+c0cos0)

I i9 {" . _,_0_,'_
+ _k //H "rsin2000 sin tl _-_ ) (23)

O:lce a balance has been established between the Coriolis

and v scous forces (the two terms on the right-hand side of

this equation), a steady state is reached. An example of such a

stead) state is shown in Fig. 4, which corresponds to a horizontal

turbuLmt viscosity of 5 x 104cm2s -l, and a ratio UH/uV = 1000.

This ratio is sufficiently large that the criterion given by Eq. (22)
is met

Tt" e rotation rate at the base of the convection zone matches

that ol the deep radiative interior at a latitude of approximately

40 °, n uch as predicted by the analytical calculation of Spiegel

and Z__hn (1992). The circulation also shows the octopolar con-

figuration that they described, with two cells in each hemisphere•

The thickness of the tachocline may' be compared with the ap-

proximate formula given in that paper.

h = 2( 000 (,_/'v'H) _ km. (24)

where _: = K/_Cp. Given uH = 5 x 104cmZs -l and using the

value ,}f _c from the base of the convection zone, this formula

predic s a thickness of about 90000km, or 0.13R-:. This is

some_ hat larger than the tachocline thickness shown by' our nu-

merical calculation for this value of z,'H(approximately' 0.1R_).

The di;crepancy reflects the fact that the approximate formula

(24) was obtained under the assumption that the tachocline is

vanish ngly thin and that _' varies much more rapidly with ra-

dius th an do other structure variables; when allowance is made
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Fig. 5. The function A3(r) in the case of strongly anisotropic turbulent
viscosity. The dashed line corresponds to _ = 5 × 10"tcm2s-z, the
dot-dashed line corresponds to tm= 5 x 105cm2s- _, while the solid
line corresponds to the form deduced by helioseismology.

for the variation of the background state with depth, as in this
numerical calculation, the tachocline is found to be thinner than

predicted by Eq. (24).

Fig. 5 shows the comparison between the function A3(r)

for two models with strongly anisotropic turbulent viscosity
(but different values of this viscosity) and that derived by Koso-

vichev (1996) from helioseismology. The dashed line shows
A3(r) corresponding to the case shown in Fig. 4, while the dot-
dashed line shows the same function for a horizontal turbulent

viscosity ten times larger (5 x 105cm2s-I). The solid line shows

the value obtained from helioseismology.

The better fit to the helioseismically deduced A3(r) is ob-

tained with the higher value of 5 × 10%m2s - 1 for the horizontal

turbulent viscosity plotted in Fig. 5. This value is significantly
smaller than the lower bound of 1.5 × 10Scm2s -I stated by

Zahn (1992) based on Eq. (24). If a tachocline thickness of

0.1RE: or 70 000km were presumed, then Eq. (24) would re-
quire the ratio _/uH to be approximately 150. _ is approximately

2 × 107cm2s -l at the base of the convection zone, leading to
UH ,_ 105cm2s -l. The estimate of 1.5 x 108cm2s-i as a lower

limit for v. would thus appear to be wrong, as it would lead
to a tachocline several times narrower than the resolution of

helioseismic inversions for the rotation rate.

Zahn (1992) used this limit to argue that if all the energy go-

ing into turbulent motions (as calculated from the shear implied

by helioseismic measurements) were dissipated by viscosity on
a small scale, then the vertical component of the turbulent vis-

cosity required would imply a turbulent diffusivity too large to
tolerate the observed surface abundance of lithium. This find-

ing may simply be a consequence of the overestimate of the

horizontal component of the turbulent viscosity.

The thickness of the tachocline in Fig. 4 shows a clear vari-
ation with latitude. There is some evidence in helioseismic in-

versions for rotation rate (Thompson et al. 1996) for such a

variation being present in the sun, giving additional support to

this theoretical description of the solar tachocline. The actual

magnitude of the variation has yet to be quantified, and awaits

more accurate determination of p-mode frequency splittings.

Under the assumption of no net torque at the base of the

convection zone, models of the solar tachocline with strongly

anisotropic viscosity predict a value of about 416nHz _ 0.9 lf2e

for the rotation rate of the solar radiative interior (Qe is the

equatorial rotation rate); the value is determined solely by the

imposed rotation law at the base of the convection zone, a de-

pendence which has been described analytically by Spiegel &
Zahn (1992). This differs from the current best helioseismic esti-

mates, e.g. from GONG data, of about 435nHz _ 0.95_e. Thus,

in this model, the rotation rate of the radiative interior matches

that of the convection zone at a latitude of about 40 °, while he-

lioseismology indicates that the two are equal at a latitude of
nearer 30 ° in the sun.

In the presence of a torque, such as could be produced by

angular-momentum loss associated with the solar wind, it might

be expected that a large differential rotation would be set up, as
suggested by Zahn (1992). Since helioseismic inversions indi-
cate that there is no such differential rotation in the radiative

interior, some mechanism must inhibit this process. It has been
suggested by Rosner & Weiss (1985) and Mestel & Weiss (1987)

that a weak connected magnetic field may cause the solar interior

to rotate uniformly. Alternatively, Zahn (1994) has suggested

that gravity waves excited by penetrative convection may trans-

port angular momentum radially and help to enforce uniform

rotation. The relative importance of such processes may become
clearer as more detailed helioseismic data become available.

6. Mixing in the turbulent tachocline

Recent helioseismic inversions for the sound speed in the

tachocline show a higher (6c2/c 2 ,_ 0.004) value in the sun

than in the latest models. These models incorporate gravita-

tional helium settling (Michaud & Proffitt 1993), which causes

the helium abundance to increase with depth below' the base of

the convection zone. It has been suggested that the discrepancy
could be due to the circulation in the turbulent tachocline mixing

helium back into the convection zone, thus reducing the mean

molecular weight in the tachocline and thereby increasing the

sound speed.

In order to test this theory, the evolution of helium abundance

is investigated using a model incorporating both gravitational

settling and advection of helium. The circulation responsible for

this advection is assumed to be that associated with a steady-
¢, "_ --Istate tachocline having UH= 5 × 10-'cm-s : it is additionally

assumed that the circulation has not changed with time. A diffu-
sion term is included to make the solution smooth at the interface

between the tachocline and the convection zone: the diffusion

coefficient drops exponentially with depth below the base of

the convection zone (with e-folding distance 0.01R? ). where
"90 "s-Iit has a value of, 0cm-" . The horizontal turbulent diffusion

(corresponding to uH) of helium is not included. The mass of the

convection zone is assumed to decrease linearly with time up to

the present-da.,, solar age from an initial value of 0.02563.I_ to

a present-day value of 0.01833/_. This linear trend, as well as
the initial and final masses, are derived from the evolution of a

standard solar model.
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whi=:h depends in turn on the chemical composition (a fully-

ioni ,.ed ideal gas is assumed). After convolution with Gaussian

functions chosen to have widths reflecting those of optimally-

localized averaging kernels used in helioseismic inversions, the

dashed curve is obtained. The large hump in 6c2/c 2 below the

base of the convection zone is very similar to that observed in

helioseismic inversions for sound speed, and has an approxi-

mately correct amplitude (0.004). The mixing of helium back

into the convection zone thus appears to be a good candidate

for explaining the sound speed discrepancy in the region of the
tach )cline.

Fig. 6. The spherically-averaged hydrogen profiles obtained without
advection of helium (solid line) and with advection (dashed line).
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Fig, 7. The difference in sound speed between a model with advection
by the tachocline circulation and a model without such advection (solid
line); the diamonds (joined by the dashed line) show this quantity con-
volved with Gaussian functions having widths corresponding to those
of optimally-localized averaging kernels from helioseismic inversions.

The result of the calculation is presented in Fig. 6. The solid

line shows the spherically-averaged hydrogen abundance, X
(after subtraction of the initial abundance, X0), without advec-

tion by the circulation, while the dashed line shows the same
quantity when advection is included• Without advection, the in-

crease in convection-zone hydrogen abundance by the present

day, 0•032, agrees reasonably welt with that given by more de-

tailed evolution calculations that include helium settling. When
advection is included, helium is mixed back into the convection

zone and the increase in convection-zone hydrogen abundance is

reduced to 0.024. Advection also removes the steep gradient of

hydrogen abundance just below the base of the convection zone.

thus increasing the sound speed in this region and improving the

agreement with helioseismic inversions. Looking more closely

at the shape of the dashed line, the hydrogen abundance is seen

to descend from the convection-zone value via two plateaus,

which correspond to the two circulation cells seen in a radial

cut through the streamfunction shown in Fig. 4.

The solid line in Fig. 7 shows the quantity (c_-/c 2, reflecting

the difference in squared sound speed between the model with

advection and that without. This quantity is assumed to be pro-

portional to the fractional difference in mean molecular weight.

7. Conclusion

This paper has confirmed some of the findings of Spiegel & Zahn

(1992)• Without anisotropic viscosity, the differential rotation
of the convection zone would diffuse into the radiative zone at

too _-reat a rate to comply with observations. When anisotropic

visc_,sity is introduced, the spread of the differential rotation
is in_fibited, and a steady-state is reached in which advection

of angular momentum balances Reynolds stresses. The rotation
rate at the base of the transition region so formed is equal to the
rotation rate of the base of the convection zone at a latitude of

approximately 40 ° .

The simple viscous stress operator considered here is not

the only case one could imagine. For instance, the coefficients

of tu:bulent viscosity may vary with latitude, since turbulent

motions are more strongly rotationally constrained at the poles
than at the equator.

While the results presented here are mostly in agreement

with those of Spiegel & Zahn (1992), the estimated value of the

horizontal component of the turbulent viscosity, 5 × 105cm2s -t ,

is significantly smaller than the lower bound given by Zahn

(199?.), and is only a few orders of magnitude larger than the mi-

crosc 3pic viscosity. This implies very short characteristic length
scale ; (104cm) at the velocities associated with convective mo-

tions, or very low velocities (10-Scm s -_) at the length scale

assoc iated with the tachocline. It should be noted that given the

uncertainty associated with current estimates of the tachocline

thickrless, and the weak dependence of this thickness on the hor-

izontal turbulent viscosity, un could in reality be significantly

large1 than the value obtained here.
S nce the circulation associated with the steady-state

tacho :line advects helium, a certain amount of mixing occurs
belo_ the base of the convection zone. Numerical calculations

taking: into account the interaction between this mixing and

gravitational settling show that the sound speed could be mod-

ified in such a way as to remove the discrepancy found in he-

liosei .mic inversions. This gives independent confirmation of
the thickness of the tachocline as deduced from rotation-rate

invers ions•

In obtaining these results, several overall simplifying as-

sumplions have been made. It has been assumed that the con-

vecticn zone sets the boundary conditions for the radiative in-

terior, which does not allow for any feedback of the radiative
interi_ r on the convection zone. The effects of convective over-

• °
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shoot have not been considered either - these would affect the

boundary between the radiative interior and the convection zone

over a region comparable with the pressure scale height. Tur-

bulent transport of heat has also been neglected in comparison

with radiative transport, an approximation which is valid so long

as the tachocline is not too thin. A better model would consider

the full interaction between the convection zone and radiative

interior, allowing for the effects of penetrative convection and

turbulent transport of heat - such a model would certainly be

much more complex than that considered here.

What has emerged from the results presented here is the

diagnostic potential of rotation-rate inversions using frequen-

cies obtained from such experiments as MDI and GONG. By

measuring the thickness of the tachocline, the variation of this

thickness with latitude, and the interior rotation rate, many as-

pects of the dynamics of this fascinating region of the sun may

be studied. The great improvement which may be expected in

the accuracy of helioseismic measurements over the next several

years will enable a much better understanding of the tachocline

to be reached.
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